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Introduction
Ir. this paper we consider the problem of comparing the pcwer of
several features used in programming languages. For example, it is
intuitively obvious to any programmer that recursion cannot, in general,
be replaced by iteration with variables alone, but recursion can always
be replaced by a pushdown stack. This indicates that a pushdown steck
is at least as powerful as recursion, and that recursion is more powerful
than iteration. Thus, from the iteration-vs-recursion standpoint we
would say that ALGOL and PL/1 are more powerful than FORTRAN. The
question is whether an intuitive notion of this kind can be understood
in a formal way, and possibly elaborated upon to obtain a better under-
standing of programming featurcs and to eﬁable us to compare their power.
Unfortunately, the problem is not so sihble. Consider, for example,
the programming language of flowcharts, which contain ideal integer
variables, i.e., their values can be arbitrarily large. The operations
allowed in the flowchart are incrementing and decrementing variables by
one, and testing to see if the value of a variable is zero. Such a
simple language with just three variables can calculate all the "computable
functions, that is, all the partial recursive functiéns over the natural
numbers. Thus if we add recursion or a pushdown stack to such a language,
the power of the language will not be increased.
This suggests that in order to carry out such a study, we must
isolate in some way the effect of the programming features, whose power
\
we wish to compare, from the values being computed by the program. For
this purpose we consider for each programming language =z class of program

schemas; a program schema may use the control features of the language




but the basic operations (constants, functions, and predicates) are
used orly as symbols without being specified.

Related work has been done previously, among others, by Paterson and
Hewitt [1970], Garland and Luckham [1971], Constable and Gries [1972],
Plaisted [1972] and Chandra and Manna [1972]. The classes of schemas
considered in these papers are not identical to ours, but the differences
are not significant. Details of the results presented in this paper

can be found in Chandra's thesis [1973].

Part T. The Class of Program Schemas

A program schema is a program in which the data domain is not

specified. 1In addition, the constants are indicated simply by the
symbols al,ag,... s the functions by fl’fP"" s and the predicates
by PsPos s - Thus a program schema may be thought of as representing

a family of real programs. A real program of the family is obtained by

providing an interpretation for the symbols of the program schema, i.e.,

specifying a data domain and specifying data elements, functions and

predicates over the domain for the symbols a; fi and p; » respectively.

In our program schemas we uce two kinds of variables: data

variables, deno.=d by yl,ye,... > and boolean variables, denoted by
21’22’ .+ . Boolean variables can have value either true or false.

Data variables, on the other hand, have values from the data domain

that is specified along with an interpretation for the schema. Corres-
pondingly, we distinguish between two types of terms: data terms and
bcolean terms. A data term T can be built up using the data variables

Yy of the schema and the individual constants ai ; and applying the




function symbols fi to them. The value of a data term for a given

interpretation is always a data element. A boolean term « 1is an

atomic formula or a negated atomic formula, where an atomic formula

is a boolean value (true or false), a boolean variable zi ; Or a

predicate test of the form p(Tl,--.,Tk) - Under any interpretation,

the value of @ is a boolean value, true or false.

1. Simple Algol-like Schemas

The first class of schemas we consider is the class of Algol-like
schemas which can be constructed from statements of the following form

(we use standard Algol-like notations):

(i) start statement START(a)
(ii)  halt statement HALT (1)
(iii) loop statement LOOP
(iv)  assignment stetements V. ~ 7T

or Z, ~Q

i
(v) test statement if o then goto L, else goto L, -
Ll and L2 here are labels. In addition we may use begin ... end

for grouping statements.

.-




The start statement,

START(a) , initializes all data variablos ¥y
to the value a and all booleun variables to truc . The halt ctubtement,
HALT(T) , outputs the data value of the term < . The loop statement,

LOOP , causer the schema to loop forever.

We use () to denote the class of all simple Algol-like schemas.

2g Augmented Algol-like Schemas

We will also consider Algol-like schemas augmented with features

designed to make the schemas more powerful.

(a) Counters

A counter is a variable whose value is always a non-negative integer.
Counters are denoted by cl,CQ,... + All counters used by a schema are
initialized to zero by the start statement. The ctatements allowed
on an arbitrary counter c¢ are:

(1) c «~c+l

(2) if ¢ = O then goto L, clse begin ¢ ~ c-1; goto L, end.

We use ((c) to denote the clas. of Algol-like schemas with
counters (it includes the subclass of schemas with no counters),
2(1c) to denote the class of cchemas with at mogt 1 counter, and

C{2c) to denote the class with at most 2 counters.

(b) Pushdown Stack

A pushdown stack is a last-in first-out store in which a pair of

values of both types (data, boolean) can be stacked. PFushdown stacks

are denoted by sl,se,... . All pushdown stacks used by a schema are

initialized to be empty by the start statement. A schema with a stack

.




can "push" a data value and & boolean value into the stack, and it
can "pop" them {if the stack is non-empty) .
The statements allowed on an arbitrary pushdown stack s are: i
(1) push(s,y,z) :
) (2) if s = A then goto Ll

else begin Rgg(s,y,z); goto L2 end

Here, y denotes an arbitrary data variable, z a boolean variable,

e e et

. values of the variables y,z on top of the stack s The statement

pop(s,y,z) " does the opposite: the one data and one boolean value
- at the top of the stack s are assigned to the variables y and z ,

|
» and A the empty stack. The statement " push(s,y,z) " adds the current
respectively, and these two values are rcemoved (popped) from the stack.

We use ~(s) to denote the class of Algol-like schemas with

) pushdown stacks, and similarly for C(ls) and ¢(2s) .

() Queues

A queue is a first-in first-out store. Queues are denoted by

' ql,qe,... - All queues used by a schema are initialized to be emply
by the start statement. A schema with a queue can "add" values al one
end, and "remove" them from the other. The statements allowed on an
. arbitrary queue q are:
(1)  add(a,y,z) {
. (2) if q = A then goto I, J
else begin remove(q,y,z); goto L, end
The statement " add(q,y,z) " adds the current values of the voriablecs J
' ¥z at one end of the queue. The ctatement " remove(q,y,z) " does the !




-

following: the one data and one boolean value at the end of the queue
are assigned to the variables y and z , respectively, and these two
values are removed from the queue.

We use (C{q) to denote the class of Algol-like schemas with queues.
(d) Arrays
An array is a semi-infinite sequence of "locations" (numbered |
|
0,1,2,... ), each of whicn can take on a pair of values: one data value 1
and one boolean value. Arrays are denoted by Al’AQ"" . Tue start

statement, START(a) , initializes all locations in arrays to the data
value a and the boolean value true . A location can be accessed by
|
|

subscripting the array with a counter. The statements allowed on an

(1) Alel ~ (y,2)
(@) (y,z) - Ale] .
We use C(A) to denote the class of schemas with arrays. Note

that the use of an array implies the use of counters, that is, schemas

arbitrary array A are:
in C(A) do have an arbitrary number of counters. i

The class of Algol-like schemas with any or all these features

(counters, stacks, queues, arrays) is denoted by C(s,q,4) .

R Recursive Schemas {

A recursive schema consists of a set of recursive definitions of {

the following form: 1
Fl(a,a,...,truq,true,...) where |

- - - - - - - - - - - t
Fl(yl,zl) <= if al(yl,zl,F) then Tl(yl,zl,F) else Ti(yl,zl,F) i
Fn(yh’zn) <= if ah(yn,zn,F) then Tn(yn,zn,F) else ¢£(yn,zn,E) ; {




where Y represents a vector of data variables, 2. a vector of boolcuan
i

variables, and | = (Fl,...,Vn) is a vector ol "defined function:s".
EBach defined function Fi may take both data values and boolean valuec
as arguments but, for simplicity, we assume that it always returns just
one data value. ai(ii’ai’ﬁ) is a boolean term and Ti(ii,ii,f) and
Ti(ii,ii,F) are data terms that may use the variables in ii and éi , and
the defined functions F along with the constant symbols al,az,... , the
function symbols fl’fQ"" » and the predicate symbols PysPos e

Ti.e value of the schema for any given interpretation is the value
of Fl with all its data arpguments set to the value of the individual
constant a , and all its boolean arguments set to true. During
computation, all arguments are passed by value, i.e., the innermost
function zalls are evaluated first. Note that there are no "global"
variables, and function calls cannot have any side effects, they simply

return values.

We use C(R) to denote the class of all recursive schemas.

h.  Fquality
We also consider schemas in which e&ery boolean term Q may have
the form 7, =1, or 7, / T, in addition to the earlier possibilities.
When equality is allowed in a class ¢{...) , we denote the
augmented class by CG(...,=) . Thus, we use C(=) to denote the clase
of Algol-like schemas with equality, C{c,=) to denote the class of

Algol-like schemas with counters and equality, C(R,=) to denote the

class of recursive schemas with equality, etc.

N LT T aarE e Y




5.  Example
Any two schemas S§ and S' are said to be equivalent if for every

interpretation of §& and J! ,f/ either both schemas diverge (i.e.,
loop forever), or both halt with the same output.
Consider thc following recursive schema
So¢ F(a) where
F(y) <= if p(y) then y else f(y;F(g(y)))

Note *that if we have an interpretaticn of for which

59
p(gn(a)) = true for some n >0, and

p(g'(a)) = false for all i <n ,

then

F(a) = f(a,f(g(a),i‘(rzz(a),---,f(en-l(&),t;n(a))---)))

Below we cxhibit some Alpol-like schemas tha! uwirc equivalent to SO :

To simplify the programs we use an extended Algol-like language, using

vsognlar while...do ... statements, goto statements and if ... then ... else...

statements. All tnese statements can be exprecsed easily in terms of
our primitive statcments. We allow also the statement ¢, = ¢, which
can be replaced by legal ctatements for counters by adding one additional
counter.

For clarity, we add a few comments in the schemas kbeclow. Since

boolean variables play no role in this example, we ignorc their presence

in the comments.

*
—/ i.e., the interpretation includes an assignment to all constant,
function and predicate symbols occurring in § or in 3!




e . e

(a) A zimple cchera
5.: GOTART(a);
while = ply)) do y; - &lyy)s
{comment : 1 g (a) }
lig Sf p(yh) then HALT(y,)
else begin y, =~ a; y), - g(y),); Y3 =y, end;
{comment: in the i-th loop (1 <1i < n)
0 il i
¥ = £ (a), y; = &7 (a), y) = & (a)}
while = p(y,) do begin y, - &(y,); v, - &(y,) end;
{comment: in the i-th loop (1 < i <n)
n-i n i
Yo = & (a), Yy, =8 (a), Y, =6 (a)}

goto L

(b) A schema with counters

S,: START(a);

while — p(yl) do begin e u(yl); ¢, = ¢, +1 end;
{comment : ¥y = g'(a), c, = n}

L: if c) = O then HALT{y )

else begin Yo = @5 ¢y - c]-l; Cs =4y end;
while c, # 0 do begin Vs & g(y2); c, = c,-1 end;

{comment: in the i-th loop (1 <1i<n)
n-i
y2 =8 (8‘>) cl = n'i}
¥y = £(¥osyq) s
1 2’v1

goto L .

10




(¢) A schema with a pushdown stack
§,: START(a);
while - p(v;) do bepin push(s,y,,z); ¥y - clyy) end;
{comment : y1=£5n(a), s =(2,i5(2),...,8" a)) ]
L: if s = A then HAIE(yl) else Egp(s,yg,z);
{comment: in the i-th loop {1 <i < n)

n-i n-i-.
y2° 14 1(&), ] (a)ﬁ(a):”-)li ("'))]
¥y = fvpyy)s

goto L

(d) A schema with un array
5,: START(a);
while - p(y;) do begin Alc] - (¥152); ¢ = e+l ¥y = &(y;) end;
{comment : yl=g%ab A[0] =a, A[1] =g(a), ...
Aln-11=¢""(a), ¢ = n}
L: if ¢ = O then HALT(yl)
else begin ¢ = c-15 (v,,2) ~ Alc] end;
{comment: in the i-th loop (1 <i <n)
Yo = €7 (a), e - n-i)
¥y = T(¥¥y)s

goto L

11
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(e) A schema with equality
SS: START(a) ;
vhile - p(y;) do y; =~ &ly;);
y2 - yl;
{comment : ¥y =¥, = gn(a)}
L: if ¥, = & then HALT(yl) else Vs < a3
while g(y;) £ v, do v, - &(yy);
y2 53 yf;
{comment: in the i-th loop (1 <i<n)
Vp = V5 = " (a))
vy = £(¥0sy,)s

goto L

Part II. On the Power of Classes of Schemas

Let ci and Cé be two classes of schemas. We say that

(a) C, _is more powerful than C, (notation: Cl E:C?) if for every

schema in (, there is an equivalent schema in 61 s
—

(v) ¢, _and &, are equally powerful (notation: Cy = C?) i

, and

e

3 2 L]
E:Cé and cé zvcl

(c) C, _is strictly more powerful than ¢, (notation: ¢ >C) s

if ¢ 2C, but ¢ A&, .

l. The Comparison Diagram

We now consider tne interrelations between the classes of schemas

we have defined.

12
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Intuitively, anything that can be done iteralively can also be
done recursively . In other words, we would expect that C(R) >¢() , and
&(Ry=) >C(=) . That these are indeed truc was shown by McCarthy [1962].
Also, as mentioned earlier, one expects that recursion is strictly more
powerful than iteration. Paterson and Hewitt [1970)] showed that there
are certain recursive schemas for which there are no equivalent simple
Algol-like schemas, i.e., C(R) >¢C() , and also ((R,=) > (=) .

Another intuitive notion is that recursion can always be replaced
by a pushdown stack. Thus, if our schemas in C(R) and ¢(1s) do
capture the intuitive power of rccursion and of a pushdown stack, we
would cxpect that C(R) < (1s) , and similarly, C&(R,=) <C&(1s,=) . These
were shown to be true by Hewitt [1970| and by Constable and Gries [1972]. One
should also ask whether a pushdown stack has power strictly greater than
recursion, or whether they are equally powerful. To state this in
another way, we observe thatl recursion involves thc use of an implicit
stacking mechanism. The question is whether or not this implicit stack
really utilizes the full power of a pushdown stack. Chandra [1973]
answered this by showing that ¢(R) = ¢(1ls) , and that C(R,=) = C(1s,=) .f/

Paterson [unpublished memorandun] and Garland and Luckham |[1)71] showed
that ¢(c) > ¢(le) . Plaisted [1972] proved the surprising resull that the
addition of just one counter to simple Algol-like schemas adds no power,
i.e., C(lc) =¢() . However, the add.ition of a second counter adds
power, i.e., ((2c) > C(lc) ; and after that, the addition of a third,

fourth, fifth counter, etc., does not increase the power.

i It can be shown that the power of recursive schemas is not affected
by the addition of features such as: (a) recursive dcfinitions
which consist of simple Algol-like programs with global variables
and local variables as well as recursive calls, or (b) defined
functions which return not just one data value, but a vector of data
and boolean values.

15




Constable and Gries [1972] introduced schemas with arrays and
used a problem suggested by Paterson and Hewitt to show that ((A) > 2(R)
Chandra and Manna [1972] observed that-the use of equality increases the
power of schemas.

The interrelationships between the various classes of schemas is
shown in Figure 1. 1In the figure (and all following figures), if there
is an ascending arc (or a chain of such arcs) leading from a class c1

to a class

o ) and c? is above c,l in the figure, it means that

- c,2 is a strictly more powerful clacs than C%."' If two classeg,
01 and ch » are not linked by an ascending chain of arcs, then the
classes are wnrelated, i.o., Cl ér@k and C? éfcl . For cxample,
(=) £C(A) , and C(A) (=) . 1In other words, there is at least
one schema in (=) for which there is no equivalent schema in c(p) ,
and vice versa. Details of all the results suggested by Figure 1 can
be found in Chandra‘s thesis [1973].

From Figure 1 it is apparent that schemas with arrays and equality
act as a "maximal" class. In fact, any arbitrary schema with
cquality, counters, stacks, queues and arrays can be effectively
tranclated into an equivalenl schema with equalily and onc wrrny.
Also, one pushdown stack hasg the scame power as recursion, bul two clocke
are strictly more powerful -- they are together as powerful as arrays.
Even the seemingly "weaker" class with one pushdown stack and one counter
has the same power as arrays. Observe that a queue is a more powerful
feature than a stack; actually, a queue is as powerful as two stacks

(addition of more stacks or queues adds no power) .

14
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Cfe,=) C{A) C(R, =)

o) 5 N
| ra

e

()

() = C(lc)
cle) = ¢(2c)
(R) = C(ls)
() e, de) T C(0n) C(1q) (1A) 25,49, A)

and cimilarly, when we add cqualily Lo cach o laue

=) = C(le,=)
C(c,=) = Cf2c,=)
&(R,=) = C(1s,=)
C(A,=) ~ C(ls,1lc,=) = ¢(2s,=) = C(lg,=) = C(14,=) =

Figure 1

C(s,q,A,=) .
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Lt is Inleresling to label Lhe verbjces off Migee ) in anobher way,
as shown in Figure 2. (Note that Fipures 1 and 2 are isomorphic; that,
is, they represent the same relationships). This figure can be treated
as a unit cube where the axes are labeled:

x-axis: "add a stack and delete .. counter",

y-axis: "add a counter", and

z-axis: "add equality tests".

¥ z " (1s,1lc,=)
e, ) (s, )
P ~
- G{li‘.,f} ‘\‘
2 S
ef2e) ¢(1s)
r'_llrl"::l
Firure
2. Some Proofs

To illustrate how the results of Figure 1 are proved, we give an

intuitive idea of the proofs for the results indicated in Figure 2.

16
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| ?
c(c) C(R)

|

[ 3

e()
Figure 3

4

)

In the following we use the result that for any classes cl , 0/2 »

. Cy of schemas, if ¢ <C, é(% and Gy <¢s then ¢, <Cy This
Tfollows from the fact that if cl < 02 é% then there is a schema S

in 63 for which there is no equivalent schema in 02 , and hence no
equivalent schema in 61 . This implies that 63 ,{cl . Since (',l _<_c3 ,

it follows that ¢, <, . Similarly we have that if ¢, >¢C, gaj

"
and ,12(",_), then (jl

c(A) >clc) >¢() , and that (R) and C(c) are unrelated, it suffices

>c5 . Thus, to show that ¢(A) >c(R) >¢() ,

Lo prove that ¢(A) >C(R) >¢c() , ¢(A) >c¢(c) >¢() , and that ¢(R)
and ¢(c) are unrelated, i.e., @(R) pc(c) and C(R) £ c(c) . This
follows because

c() ccle) gCR) and () <C(R) imply C() <CAR)

) <c(R) C(c) and ¢() <cle) imply () <Cle)

C(A) >¢C(c) £C(R) and C(R) <c(A) imply C(R) <(A) , and

C(A) >C(R) £¢(c) and ¢(c) <C(A) imply Cfc) < C(A)

[oh

It is trivial that C(A) >C(c) >C() since every schema in ¢()

) is in ¢(c) , and every schema in C(c) is in 2(A) . We also have

17
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C(R) >C() scince every simple Algol-like schema can be translated
into an equivalent recursive schema by associating a defined function
with each statement in the Algol-like schema. ¢(A) >C(R) can be
shown by simulating a pushdown stack with arrays using standard
call-by-value AIGOL compilation (booleans are used to represent the
returr address).

The interesting part is to show that C(R) and C{c) are
unrelated, j.e., to exhibit a schema Sl in ¢(R) for which there

is no equivalent schema in ((c) , and a schema S, in ¢(c) for

which there is no equivalent schema in ¢(R)

(a) Consider the following recursive schema (in ¢(R) ):
8, F(a) where

F(y) <= if p(y) then y else £(¥(g(y)),F(h(y)))
There is no schema in ((c) equivalent to this. The reason is that
the computation requires storing an arbitrarily large number of
temporary data values, whereas every schema in 2(c) has a fixed
number of data variables.

Consider a class of interpretations {In} having the following
property: for every In s n >0,

(i) distinct terms yield dis£inct data elements under I, , and

(ii) p is true only for the terms that contain n occurrences

of the functions g and h applied to a .
The schema Sl on the interpretation In computes the term Tn(a) where
TO(y) =Y , and

7o) = 2 (e(y)1, (h(¥))

18




For example, 8, under I, and I, computes the terms f(g(a),h(a))
and f(f(g(g(a),,h(g(a))),f(g(h(a)),h(h(a)))) » respectively. These

terms can also be represented as binary treces as shown below:
T(a) + 2(e(a);h(a)) s

T and

N

g(a) h(a)

Tola) s f(f(e(a(a)),n(a(a))), f(e(n(a)),h(n(a)))) is
]
Eﬂﬂ,r“'fﬂff#hﬁhﬁh“‘ﬂahhj‘

e(e{a))  n(ela))  gn(a))  h(u(a))

Suppose there is a schema S from ¢(c) that is equivalent to S
Without loss of generality we assume that S has no symbols other than
a, f,g,h and p, that the only assignments that use f have the
form Y5 -1(yJ,yk) » and that halt ctatements have the form HALT(yi)
“ongider the computation of § under the interpretation ]n . Since 1
is ascumed to be equivalent to Sl it computes the term Tn(a) which
can be represented as a perfectly balanced tinary tree of height n .
Now we consider the computation of arbitrary binary trees in which each
node corresponds to a distinct value and where in a single step at most
one binary function can be applied. It is well known, and can be proved

readily by induction, that the number of variables #(T) required to
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compute the term corresponding to such a binary tree ' is given by

#( <) = 1 , and

¢ ; = 4f ($(2)) =#(T,)) then #(17)+1
@ @ else m&X(#(Tl):#(Te))

This tells us that ntl variables are required for computing the term

Tn(a) . For example, three variables are required to compute Tz(a) 3
v, - e(s(a)) 5 vy, =hle(a)) 5 y; = flypyy) s
v, = e(n(a)) 5 y; ~hh(a)) ;5 v, = Hyys)
¥y = £(yyv,)
Now, I. the schema S has, say, m data variables, then for the
computation of T under Im » S must have at least mtl data

variables -- a contradiction. ‘Thus no schema in 2(c) is equivalent

to Sl .

(b) Consider the following problem: '"given a constant a , unary
functions f,g , and a predicate p , find an element x of the form
fi(gj(a)) » 1, >0, such that p(x) is false. If no such x exists
then the schema loops forever". 1In the following we refer to this

problem as the witch-hunt problem.

It is easy to sece that schemas in ¢(c) can solve this problem.

The following is one such schema:
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R 0

S.: START(a);

Ll: ey - cl; ¥y T as
Lot o5 = Co3 ¥y =¥y
while €, F 0 do begin €z < c5'15 Yo f(yg) end;
if - p(y,) then HALT(y,);
. vy - elyy)s

if c, £ O then begin c,_ «~ c,-1; goto L, end;

2 2

ey - cl+l;

goto Ll

The idea is that for a given « @ E O,l,z,B,...(Ll-loop) y We

1 %

) check the value of p for all possible terms of the form
c, cj-c,

v, = (g “(a)) 1in the following order: c

= C cl'l) ---,l,O(Lg-lOOp)

2 1
However, no schema in (C(R) can solve the witch-hunt problem.
’ Intuitively, the reason is that no schema in @(R) can compute all
terms of the form fi(gj(a)) » in any order. For suppose there is a
schema S in (C(R) that solves the witch-hunt problem. Then, without
) loss of generality we can assume that S hes no predicate other than p ,

and that defined functions in 8 have no boolean arguments. Lel n

be the largest number of arpuments of any defined function in 8.

) Consider an interpretation Itrue for which the predicate p isc true
for all terms. We also requive that distinct terms yield distinct data {
elements under Itrue s and we claim that § cannot generate all the i
’ terms on the n+l columns described in Figure k4.
The j-th column, 0 < j <n , consists of all terms fi(gj(a)) for
all i >0 . To show this, we divide all terms into 2n+3 sets Aj s Bj , C
)
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AO Al A2 An C
» 5 =
a g(a) g (a) G - gn(a) all other
terms
BO Bl B2 Bn
’ 2 n
f(a) f(g(a)) £(g (a)) c -« | f(g(a))
|
2 2 2, 2 2, n |
(a)]  |£7°(e(@))] (") - . . [£(e"(a)) |
) 5 Syl n
) (e)| || || ... |2 e)
Y b b, 2 4, n
£ (a) (g(a))] £ (e (@) . . . |f (g (a))
|
|
Figure 4 I
|
{
’ for 0<3j<n . The set Aj consists of the single term g‘j(a) s |
the set Bj gonsists of the entire column of terms fi(g‘j(a)) I
for i >0 , and the set C is the "catch all" consisting }
" of all other terms. Now, as the schema § must loop on the interpreta- 1
tion Itrue » and there are only finitely many sets, there must he some 1
1
defined function Fk that calls itself recursively such that each one 1
b |
of its argmments is in the same set as in the earlier call. Then, as |
the predicate tests are always true, the defined functions called |
between such two calls of Fk are repeated in the same order, and with |
]
the arguments from the same sets as before. Hence, there is at least 1
cne column, say 'jl ; such that no argument of these calls of Fk is 1
’
from it. Therefore only finitely many terms from column jl can be 1
e
{
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reached durin;; the computation, i.e., there is at least one term, say

L gy
f (g “(a)) , that ic never tested.

Now we chenge the interpretation I clightly to I

true not co true
il jl
in which p applied to all terms is true except that p(f “(g ~(a)))

. s PR . .
is false. Then the computation  $ on the interpretation Inot R—

ie the same as the compubtatic.. or It,rue , i.e., § will loop on

T’not 55 hie But as 8 1is assumed to solve the witch-hunt problen,

J
it must halt with output f l(g l(a)) -- a contradiction. This provec

e

that no schema in ({(R) can solve the witch-hunt problem.
It is interesting to rote, however, that the witch-hunt problem
can indeed by solved by some Algol-like schemas with equality and no

counters, i.e., by schemas in ¢{=) (see Chandra {197)]).

. Nuwaber of Variables and Depth of Data Terms

One can ilavestigate further the effect of the number of data
variablec on the power of schemas. It can be chown, for example, that

%
for every n, n >0 :J

(a) (R, n var) > C(n var)
(b) (R, 1var) £ ¢(n var)
(¢) ¢{R, n var) % C(n+l var)

This implies the relations showm in Figure 5. Recall that 1if there is
an ascending arc leading from any class cl to another class 02

it means that 31'< 32 J 3

.X.

—/ Here, " n var " indicates that the schena has at most n data
variables (in Algol-like schemas) or at most n data arguments
for defined functions (in recursive schemas).

25




e
»” —1 & ‘
1

i
’ 4
Ffﬂﬂﬁﬂﬂﬂﬂﬁ* ]
‘ Simple Algol-like ) Recursive
) (no. of variables) 5 (no. of variables)
1
1
4
O var
Figure 5
(2) The result that C(R, n var) >¢(n var) follows by the standard

process of translating a simple Algol-like schema into an equivalent

recursive schema. (b) The recursive schema above is in

5
1
C(R, 1 var) , but there is no schema in (% (n var) , for any n >0 ,
which ic equivalent to Sl . (r) 1o show thal there it u schema in
C(n+1 var) which is not equivalent to any schema in (R, n var) we
consider the following problem.

"Find an element x of the form fi(gJ(x)) » 1 >0 and j<n,

such that p(x) 1is false." We refer to this problem as the restricted

witch-hunt problem. The following schema S, in C(n+l var) solves the

3 ]
problen. d
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17N

| S,: START(a);
| : Yo = 8(y)5 vy = elyp)s -5 v, — 8y
L: if o p(yl) then HALT(:,rl) else y, - f(yl);

if - o(y,) then HALT(y,) else Yo = f¥,);

if - p(y,, ) then HALI(y ) elsey ., = £(y ,.);

goto L

] Our earlier proof shows, however, that there is no schema in ¢(R, n var)
which solves the problem, and therefore there it no schema in ¢(R, n var)
| which is equivaleAt to S.
» There is no'need to investigate how the number of boolean variables
affects.the power of the cchemas, since it can be shown that boolean

variables do not add any inherent power to Algol-like schemas or to

*
» recursive schemas (with or without equality).—/

We can further consider how the depth of data terms affects the

power of schemas. The depth |1l of a data term T is defined as
‘.
follows: |ai| =0 , lyil =0 , and |fi(11,...,1n)| =Ju+max{|11|,.. |1n|} .
viniiy,

Trivially, ¢(0 var, 0 depth) = &(n var, 0 depth) < (0 var, 1 depth)
for all n . It can be shown that for every n >0 and d >0, we
have:

(2) C(n var, a+1 depth) A C(n+l var, 1 depth) , and

(b) ¢{ntl var, d depth) % C(0 var, d+l depth) .

¥

~/ Note, however, that owing to the particular way we introduce
pushdown stacks, queues and arrays, at least one boolean variable ’
is required to make use of these features. !

*X
= Here " d depth " indicates that the schemas use data terms of depth i
at most 4 .
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These results imply the relations described in Figure 6. Note that, the

figure indicates, for ecxample, that (3 var, ? depth) and

¢(2 var, 3 depth) are unrelaled.

(a) The first result can be proved by using the restricted witch-hunt
problem.

(b) The second result can be proved by observing that the following
schema Sh in 2(0 var, d+1 depth) is not equivalent to any
schema in C(n+l var, d depth)

S,:

p START(a) ;

d d d
HALT(£{£](a), £5(a), .., £2, (0)))

where fg(a) means f, aupplied d {imcs to the constent a .
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k., Discussion

It is reasonable to ask what it is about the various features
we have discussed that makes one class of schemas more powerful than
another. An observation of the arguments involved in proving the
interrelationships shown in Figures 1 and 2 suggest three intuitive

factors that determine the power of the various features.

(a) The amount of data space (x-axis of Figure 2 -- "add a stack

and delete a counter"). Simple Algol-like schemas, and even those
with counters and equality, have a fixed amount of data space. This
limitation is shown by the fact that these schemas just cannot compute
certain terms which are too large. The additions of a data variable
to simple Algol-like schemas increases the power, as may be expected.
Recursive schemas act as if they had an unbounded amount of daia space

available to them, as do schemas with stacks, queues or arrays.

(b) The control capability (y-axis of Figure 2 -- "add a counter").

The control capability of a schema signifies the ability of the schema
to decide what to do next. Boolean variables and ccunters are examples
of features that help in making such decisions. Boolean variables
however add no inherent power, while two counters add as much control
power as one might want. A pushdown stack provides, in additicn to an
unlimited amount of data space, some control capability because a stack
can simulate a counter, but it does not have as much control capability
as two counters. A queue, on the other hand, provides in addition to

unlimited data space, as much control capability as two counterc.




One can also consider uther programming features that provide
control capability. One such example is the boolean stack—/’which is a
pushdown stack consisting entirely of boolean values (see also Green,

Flspas and Levitt [1971]).

(¢) The structure of terms (z-axis of Figure 2 - "add equality").

In our discussion we observed that the addition of terms containing
equality increases the power of schemas. This illustrates that if we
enrich the structure of terms allowed we may increase the power of
schemas. On the other hand, if we restrict the structure of terms,

such as by limiting the depth of data terms, we may decrease the power.

*/ A boolean stack is strictly more powerful than one counter but
strictly less powerful than a pushdown stack or two counters. Two
boolean stacks, however, are just as powerful as two counters (as
is also one boolean gqucue).
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